Package: bnstruct 1.0.15

bnstruct: Bayesian Network Structure Learning from Data with Missing Values

Bayesian Network Structure Learning from Data with Missing Values. The package implements the Silander-Myllymaki complete search, the Max-Min Parents-and-Children, the Hill-Climbing, the Max-Min Hill-climbing heuristic searches, and the Structural Expectation-Maximization algorithm. Available scoring functions are BDeu, AIC, BIC. The package also implements methods for generating and using bootstrap samples, imputed data, inference.

Authors:Francesco Sambo [aut], Alberto Franzin [aut, cre]

bnstruct_1.0.15.tar.gz
bnstruct_1.0.15.zip(r-4.5)bnstruct_1.0.15.zip(r-4.4)bnstruct_1.0.15.zip(r-4.3)
bnstruct_1.0.15.tgz(r-4.4-x86_64)bnstruct_1.0.15.tgz(r-4.4-arm64)bnstruct_1.0.15.tgz(r-4.3-x86_64)bnstruct_1.0.15.tgz(r-4.3-arm64)
bnstruct_1.0.15.tar.gz(r-4.5-noble)bnstruct_1.0.15.tar.gz(r-4.4-noble)
bnstruct_1.0.15.tgz(r-4.4-emscripten)bnstruct_1.0.15.tgz(r-4.3-emscripten)
bnstruct.pdf |bnstruct.html
bnstruct/json (API)
NEWS

# Install 'bnstruct' in R:
install.packages('bnstruct', repos = c('https://albertofranzin.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

5.37 score 1 stars 3 packages 105 scripts 615 downloads 5 mentions 97 exports 12 dependencies

Last updated 10 months agofrom:7509d30a24. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 06 2024
R-4.5-win-x86_64OKNov 06 2024
R-4.5-linux-x86_64OKNov 06 2024
R-4.4-win-x86_64OKNov 06 2024
R-4.4-mac-x86_64OKNov 06 2024
R-4.4-mac-aarch64OKNov 06 2024
R-4.3-win-x86_64OKNov 06 2024
R-4.3-mac-x86_64OKNov 06 2024
R-4.3-mac-aarch64OKNov 06 2024

Exports:add.observations<-asiaasia_2_layersbelief.propagationbnBNbn<-BNDatasetbootbootsboots<-bootstrapbuild.junction.treechildcompletecptscpts<-dagdag.to.cpdagdag<-data.filedata.file<-discretenessdiscreteness<-edge.dir.wpdagemget.most.probable.valueshas.bootshas.imputed.bootshas.imputed.datahas.raw.dataheader.fileheader.file<-imp.bootsimp.boots<-imputeimputed.dataimputed.data<-InferenceEngineinterventionsjptsjpts<-jt.cliquesjt.cliques<-junction.treejunction.tree<-knn.imputelayeringlearn.dynamic.networklearn.networklearn.paramslearn.structuremarginalsnamename<-node.sizesnode.sizes<-num.bootsnum.boots<-num.itemsnum.items<-num.nodesnum.nodes<-num.time.stepsnum.time.steps<-num.variablesnum.variables<-observationsobservations<-quantilesquantiles<-raw.dataraw.data<-read.bifread.datasetread.dscread.netsample.datasetsample.rowsave.to.epsscoring.funcscoring.func<-shdshowstruct.algostruct.algo<-test.updated.bntune.knn.imputeupdated.bnupdated.bn<-variablesvariables<-wpdagwpdag.from.dagwpdag<-write_xgmmlwrite.dsc

Dependencies:bitopsclicpp11glueigraphlatticelifecyclemagrittrMatrixpkgconfigrlangvctrs

\texttt{bnstruct}: an R package for Bayesian Network Structure Learning

Rendered frombnstruct.Rnwusingutils::Sweaveon Nov 06 2024.

Last update: 2022-11-30
Started: 2016-11-10

Readme and manuals

Help Manual

Help pageTopics
add further evidence to an existing list of observations of an 'InferenceEngine'.add.observations<- add.observations<-,InferenceEngine-method
load 'Asia' dataset.asia
'Asia' dataset.asia_10000
load a two-layers dataset derived from the 'Asia' dataset.asia_2_layers
perform belief propagation.belief.propagation belief.propagation,InferenceEngine belief.propagation,InferenceEngine-method
get the 'BN' object contained in an 'InferenceEngine'.bn bn,InferenceEngine bn,InferenceEngine-method
BN class definition.BN BN,BN-class BN-class initialize,BN-method
set the original 'BN' object contained in an 'InferenceEngine'.bn<- bn<-,InferenceEngine-method
BNDataset class.BNDataset BNDataset,BNDataset-class BNDataset-class initialize,BNDataset-method
get selected element of bootstrap list.boot boot,BNDataset boot,BNDataset,numeric-method
get list of bootstrap samples of a 'BNDataset'.boots boots,BNDataset boots,BNDataset-method
set list of bootstrap samples of a 'BNDataset'.boots<- boots<-,BNDataset-method
Perform bootstrap.bootstrap bootstrap,BNDataset bootstrap,BNDataset-method
build a JunctionTree.build.junction.tree build.junction.tree,InferenceEngine build.junction.tree,InferenceEngine-method
load 'Child' dataset.child
'Child' dataset.child_NA_5000
Subset a 'BNDataset' to get only complete cases.complete complete,BNDataset complete,BNDataset-method
get the list of conditional probability tables of a 'BN'.cpts cpts,BN cpts,BN-method
set the list of conditional probability tables of a network.cpts<- cpts<-,BN-method
get adjacency matrix of a network.dag dag,BN dag,BN-method
convert a DAG to a CPDAGdag.to.cpdag
set adjacency matrix of an object.dag<- dag<-,BN-method
get data file of a 'BNDataset'.data.file data.file,BNDataset data.file,BNDataset-method
set data file of a 'BNDataset'.data.file<- data.file<-,BNDataset-method
get status (discrete or continuous) of the variables of an object.discreteness discreteness,BN discreteness,BN-method discreteness,BNDataset discreteness,BNDataset-method
set status (discrete or continuous) of the variables of an object.discreteness<- discreteness<-,BN-method discreteness<-,BNDataset-method
counts the edges in a WPDAG with their directionalityedge.dir.wpdag
expectation-maximization algorithm.em em,InferenceEngine,BNDataset em,InferenceEngine,BNDataset-method
compute the most probable values to be observed.get.most.probable.values get.most.probable.values,BN get.most.probable.values,BN-method get.most.probable.values,InferenceEngine get.most.probable.values,InferenceEngine-method
check whether a 'BNDataset' has bootstrap samples or not.has.boots has.boots,BNDataset has.boots,BNDataset-method
check whether a 'BNDataset' has bootstrap samples from imputed data or not.has.imputed.boots has.imputed.boots,BNDataset has.imputed.boots,BNDataset-method
check if a BNDataset contains impited data.has.imputed.data has.imputed.data,BNDataset has.imputed.data,BNDataset-method
check if a BNDataset contains raw data.has.raw.data has.raw.data,BNDataset has.raw.data,BNDataset-method
get header file of a 'BNDataset'.header.file header.file,BNDataset header.file,BNDataset-method
set header file of a 'BNDataset'.header.file<- header.file<-,BNDataset-method
get list of bootstrap samples from imputed data of a 'BNDataset'.imp.boots imp.boots,BNDataset imp.boots,BNDataset-method
set list of bootstrap samples from imputed data of a 'BNDataset'.imp.boots<- imp.boots<-,BNDataset-method
Impute a 'BNDataset' raw data with missing values.impute impute,BNDataset impute,BNDataset-method
get imputed data of a BNDataset.imputed.data imputed.data,BNDataset imputed.data,BNDataset-method
add imputed data.imputed.data<- imputed.data<-,BNDataset-method
InferenceEngine class.InferenceEngine InferenceEngine,InferenceEngine-class InferenceEngine-class initialize,InferenceEngine-method
get the list of interventions of an 'InferenceEngine'.interventions interventions,InferenceEngine interventions,InferenceEngine-method
set the list of interventions for an 'InferenceEngine'.interventions<- interventions<-,InferenceEngine-method
get the list of joint probability tables compiled by an 'InferenceEngine'.jpts jpts,InferenceEngine jpts,InferenceEngine-method
set the list of joint probability tables compiled by an 'InferenceEngine'.jpts<- jpts<-,InferenceEngine-method
get the list of cliques of the junction tree of an 'InferenceEngine'.jt.cliques jt.cliques,InferenceEngine jt.cliques,InferenceEngine-method
set the list of cliques of the junction tree of an 'InferenceEngine'.jt.cliques<- jt.cliques<-,InferenceEngine-method
get the junction tree of an 'InferenceEngine'.junction.tree junction.tree,InferenceEngine junction.tree,InferenceEngine-method
set the junction tree of an 'InferenceEngine'.junction.tree<- junction.tree<-,InferenceEngine-method
Perform imputation of a data frame using k-NN.knn.impute
return the layering of the nodes.layering layering,BN layering,BN-method
learn a dynamic network (structure and parameters) of a BN from a BNDataset.learn.dynamic.network learn.dynamic.network,BN learn.dynamic.network,BN-method learn.dynamic.network,BNDataset learn.dynamic.network,BNDataset-method
learn a network (structure and parameters) of a BN from a BNDataset.learn.network learn.network,BN learn.network,BN-method learn.network,BNDataset learn.network,BNDataset-method
learn the parameters of a BN.learn.params learn.params,BN,BNDataset learn.params,BN,BNDataset-method
learn the structure of a network.learn.structure learn.structure,BN,BNDataset learn.structure,BN,BNDataset-method
compute the list of inferred marginals of a BN.marginals marginals,InferenceEngine marginals,InferenceEngine-method
get name of an object.name name,BN name,BN-method name,BNDataset name,BNDataset-method
set name of an object.name<- name<-,BN-method name<-,BNDataset-method
get size of the variables of an object.node.sizes node.sizes,BN node.sizes,BN-method node.sizes,BNDataset node.sizes,BNDataset-method
set the size of variables of an object.node.sizes<- node.sizes<-,BN-method node.sizes<-,BNDataset-method
get number of bootstrap samples of a 'BNDataset'.num.boots num.boots,BNDataset num.boots,BNDataset-method
set number of bootstrap samples of a 'BNDataset'.num.boots<- num.boots<-,BNDataset-method
get number of items of a 'BNDataset'.num.items num.items,BNDataset num.items,BNDataset-method
set number of items of a 'BNDataset'.num.items<- num.items<-,BNDataset-method
get number of nodes of an object.num.nodes num.nodes,BN num.nodes,BN-method num.nodes,InferenceEngine num.nodes,InferenceEngine-method
set number of nodes of an object.num.nodes<- num.nodes<-,BN-method num.nodes<-,InferenceEngine-method
get number of time steps observed in a 'BN' or a 'BNDataset'.num.time.steps num.time.steps,BN num.time.steps,BN-method num.time.steps,BNDataset num.time.steps,BNDataset-method
set number of time steps of a 'BN' or a 'BNDataset'.num.time.steps<- num.time.steps<-,BN-method num.time.steps<-,BNDataset-method
get number of variables of a 'BNDataset'.num.variables num.variables,BNDataset num.variables,BNDataset-method
set number of variables of a 'BNDataset'.num.variables<- num.variables<-,BNDataset-method
get the list of observations of an 'InferenceEngine'.observations observations,InferenceEngine observations,InferenceEngine-method
set the list of observations of an 'InferenceEngine'.observations<- observations<-,InferenceEngine-method
plot a 'BN' as a picture.plot plot,BN plot.BN plot.BN,BN
print a 'BN', 'BNDataset' or 'InferenceEngine' to 'stdout'.print print,BN print,BNDataset print,InferenceEngine print.BN print.BN,BN print.BNDataset print.BNDataset,BNDataset print.InferenceEngine print.InferenceEngine,InferenceEngine
get the list of quantiles of an object.quantiles quantiles,BN quantiles,BN-method quantiles,BNDataset quantiles,BNDataset-method
set the list of quantiles of an object.quantiles<- quantiles<-,BN-method quantiles<-,BNDataset-method
get raw data of a BNDataset.raw.data raw.data,BNDataset raw.data,BNDataset-method
add raw data.raw.data<- raw.data<-,BNDataset-method
Read a network from a '.bif' file.read.bif read.bif,character read.bif,character-method
Read a dataset from file.read.dataset read.dataset,BNDataset,character,character read.dataset,BNDataset,character,character-method
Read a network from a '.dsc' file.read.dsc read.dsc,character read.dsc,character-method
Read a network from a '.net' file.read.net read.net,character read.net,character-method
sample a 'BNDataset' from a network of an inference engine.sample.dataset sample.dataset,BN sample.dataset,BN-method sample.dataset,InferenceEngine sample.dataset,InferenceEngine-method
sample a row vector of values for a network.sample.row sample.row,BN sample.row,BN-method
save a 'BN' picture as '.eps' file.save.to.eps save.to.eps,BN,character save.to.eps,BN,character-method
Read the scoring function used to learn the structure of a network.scoring.func scoring.func,BN scoring.func,BN-method
Set the scoring function used to learn the structure of a network.scoring.func<- scoring.func<-,BN-method
compute the Structural Hamming Distance between two adjacency matrices.shd
Show method for objects.show show,AllTheClasses-method show,BN-method show,BNDataset-method show,InferenceEngine-method
Read the algorithm used to learn the structure of a network.struct.algo struct.algo,BN struct.algo,BN-method
Set the algorithm used to learn the structure of a network.struct.algo<- struct.algo<-,BN-method
check if an updated 'BN' is present in an 'InferenceEngine'.test.updated.bn test.updated.bn,InferenceEngine test.updated.bn,InferenceEngine-method
tune the parameter k of the knn algorithm used in imputation.tune.knn.impute
get the updated 'BN' object contained in an 'InferenceEngine'.updated.bn updated.bn,InferenceEngine updated.bn,InferenceEngine-method
set the updated 'BN' object contained in an 'InferenceEngine'.updated.bn<- updated.bn<-,InferenceEngine-method
get variables of an object.variables variables,BN variables,BN-method variables,BNDataset variables,BNDataset-method
set variables of an object.variables<- variables<-,BN-method variables<-,BNDataset-method
get the WPDAG of an object.wpdag wpdag,BN wpdag,BN-method
Initialize a WPDAG from a DAG.wpdag.from.dag wpdag.from.dag,BN wpdag.from.dag,BN-method
set WPDAG of the object.wpdag<- wpdag<-,BN-method
Write a network saving it in an 'XGMML' file.write_xgmml write_xgmml,BN write_xgmml,BN-method
Write a network saving it in a '.dsc' file.write.dsc write.dsc,BN write.dsc,BN-method